## **ENVIRONMENTAL PRODUCT DECLARATION**

# FABRICATED HOLLOW STRUCTURAL SECTIONS

VEST, INC.





Vest, Inc was formed in 1987 and is one of the largest producers of electric-welded carbon steel tubing in the Western United States. Our 350,000 square foot facility is located in Vernon, CA, just south of downtown Los Angeles. Vest, Inc produces a wide variety of welded steel tubing products including HSS and Mechanical tubing in various shapes and sizes.

Vest, Inc is a wholly owned subsidiary of JFE Shoji Trade America.

For more information, please visit https://www.vestinc.com





According to ISO 14025 and ISO 21930:2017

| EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE                                                                                             |                                                                                                                       |                             |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| GENERAL PROGRAM INSTRUCTIONS<br>AND VERSION NUMBER                                                                                                            | General Program Instructions v.2.5                                                                                    | March 2020                  |  |  |  |  |
| ASSOCIATION NAME AND ADDRESS                                                                                                                                  | Vest, Inc. 6023 Alcoa Ave, Vernon,                                                                                    | CA 90058                    |  |  |  |  |
| DECLARATION NUMBER                                                                                                                                            | 4790434237.101.3                                                                                                      |                             |  |  |  |  |
| DECLARED PRODUCT & DECLARED UNIT                                                                                                                              | Fabricated hollow structural steel se                                                                                 | ections, 1 metric ton       |  |  |  |  |
| REFERENCE PCR AND VERSION NUMBER                                                                                                                              | A and Requirements Project Report, (IBU/UL<br>I Part B: Designated Steel Construction Product EPD<br>.0, 08.26.2020). |                             |  |  |  |  |
| DESCRIPTION OF PRODUCT APPLICATION/USE                                                                                                                        | Fabricated hollow structural steel se                                                                                 | ctions used in construction |  |  |  |  |
| MARKETS OF APPLICABILITY                                                                                                                                      | North America                                                                                                         |                             |  |  |  |  |
| DATE OF ISSUE                                                                                                                                                 | July 1, 2022 (Data Update 2023)                                                                                       |                             |  |  |  |  |
| PERIOD OF VALIDITY                                                                                                                                            |                                                                                                                       |                             |  |  |  |  |
| EPD TYPE                                                                                                                                                      | EPD TYPE Product specific                                                                                             |                             |  |  |  |  |
| EPD SCOPE                                                                                                                                                     | Cradle to gate                                                                                                        |                             |  |  |  |  |
| YEAR(S) OF REPORTED PRIMARY DATA                                                                                                                              | 2019                                                                                                                  |                             |  |  |  |  |
| LCA SOFTWARE & VERSION NUMBER                                                                                                                                 | .CA SOFTWARE & VERSION NUMBER GaBi v10                                                                                |                             |  |  |  |  |
| LCI DATABASE(S) & VERSION NUMBER                                                                                                                              | GaBi 2021 (CUP 2021.2)                                                                                                |                             |  |  |  |  |
| LCIA METHODOLOGY & VERSION NUMBER                                                                                                                             | IPCC AR5 + TRACI 2.1                                                                                                  |                             |  |  |  |  |
|                                                                                                                                                               |                                                                                                                       | UL Environment              |  |  |  |  |
| The sub-category PCR review was conducted by                                                                                                                  | py:                                                                                                                   | PCR Review Panel            |  |  |  |  |
|                                                                                                                                                               |                                                                                                                       | epd@ul.com                  |  |  |  |  |
| This declaration was independently verified in a The UL Environment "Part A: Calculation Rules Requirements on the Project Report,", v3.2 (Declaration Rules) | Cooper McC                                                                                                            |                             |  |  |  |  |
| ISO 21930:2017, serves as the core PCR, with USGBC/UL Environment Part A Enhancement  ☐ INTERNAL ☑EXTERNAL                                                    | Cooper McCollum, UL Environment                                                                                       |                             |  |  |  |  |
| This life cycle assessment was conducted in ac reference PCR by:                                                                                              | Sphera Solutions Inc                                                                                                  |                             |  |  |  |  |
| This life cycle assessment was independently vand the reference PCR by:                                                                                       | James Mellentine, Thrive ESG                                                                                          | ellert.                     |  |  |  |  |

#### LIMITATIONS

The environmental impact results of steel products in this document are based on a declared unit and therefore do not provide sufficient information to establish comparisons. The results shall not be used for comparisons without knowledge of how the physical properties of the steel product impact the precise function at the construction level. The environmental impact results shall be converted to a functional unit basis before any comparison is attempted. See the results section for additional EPD comparability guidelines.

Environmental declarations from different programs (ISO 14025) may not be comparable.





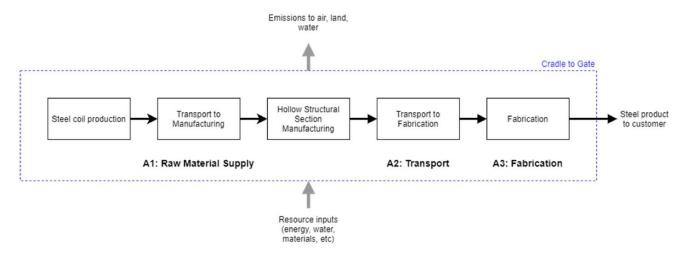
According to ISO 14025 and ISO 21930:2017

## **General Information**

## **Description of Organization**

This environmental product declaration (EPD) represents hollow structural sections (HSS) produced by Vest, Inc. in Vernon, CA.

## **Product Description**


Steel tubes covered under this declaration represents HSS, Structural Pipe, Ornamental Shapes and Mechanical Rounds.

## **Product Specification**

HSS products produced by Vest, Inc. are defined by the following ASTM standards.

- ASTM A500 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
- ASTM A513 Standard Specification for Electric-Resistance Welded Carbon and Alloy Steel Mechanical Tubing
- ASTM A1085 Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS)

## Flow Diagram



#### **Product Average**

The 2019 production data used in this EPD considers HSS produced by Vest, Inc. during the year. The products are manufactured in the US. As Vest, Inc. produces HSS at one location, no product averaging was required.

#### **Application**





According to ISO 14025 and ISO 21930:2017

Vest, Inc's steel tube products are used in a wide variety of construction and OEM manufacturing applications.

## **Material Composition**

Steel HSS products are made of carbon steel with a small percentage of alloy elements and paints included. The products do not contain any hazardous substances according to the Resource Conservation and Recovery Act (RCRA), Subtitle 3. The products do not release dangerous substances to the environment, including indoor air emissions, gamma or ionizing radiation, or chemicals released to air or leached to water and soil.

## **Methodological Framework**

#### **Declared unit**

The declared unit for this EPD is one metric ton of steel construction products. Note that comparison of EPD results on a mass basis alone is insufficient and should consider the technical performance of the product.

Table 1. Declared unit

| NAME              | VALUE | UNIT              |
|-------------------|-------|-------------------|
| Declared unit     | 1     | metric ton        |
| Density (typical) | 7,850 | kg/m <sup>3</sup> |

#### **System Boundary**

This EPD is "cradle-to-gate" in scope. The life cycle stages included in the assessment represent the product stage (modules A1-A3).

| PRO                 | DUCT ST   | AGE           | ION PR                      | TRUCT-<br>OCESS<br>AGE |     | USE STAGE   |        |             |               |                                                          | USE STAGE END OF LIFE STAGE                             |                |           | ΞE               | BENEFITS AND<br>LOADS<br>BEYOND THE<br>SYSTEM<br>BOUNDARY |                                         |
|---------------------|-----------|---------------|-----------------------------|------------------------|-----|-------------|--------|-------------|---------------|----------------------------------------------------------|---------------------------------------------------------|----------------|-----------|------------------|-----------------------------------------------------------|-----------------------------------------|
| Raw material supply | Transport | Manufacturing | Transport from gate to site | Assembly/Install       | Use | Maintenance | Repair | Replacement | Refurbishment | Building Operational<br>Energy Use During<br>Product Use | Building Operational<br>Water Use During<br>Product Use | Deconstruction | Transport | Waste processing | Disposal                                                  | Reuse, Recovery,<br>Recycling Potential |
| <b>A</b> 1          | A2        | А3            | A4                          | A5                     | B1  | B2          | В3     | B4          | B5            | В6                                                       | В7                                                      | C1             | C2        | С3               | C4                                                        | D                                       |
| Х                   | Х         | Х             | MND                         | MND                    | MND | MND         | MND    | MND         | MND           | MND                                                      | MND                                                     | MND            | MND       | MND              | MND                                                       | MND                                     |

<sup>\*</sup> X = module included, MND = module not declared





According to ISO 14025 and ISO 21930:2017

#### **Allocation**

No multi-output allocation was required in the foreground system of the study.

Allocation of background data (energy and materials) taken from the GaBi 2021 databases is documented online at <a href="http://www.gabi-software.com/america/support/gabi/">http://www.gabi-software.com/america/support/gabi/</a>. Background data for steelmaking from AISI use the system expansion allocation method for co-products from the steelmaking process.

Since the EPD does not cover the end-of-life of the products, end-of-life allocation is outside the scope of the study. Metal scrap from manufacturing (module A3) was balanced with the scrap demand of the raw materials module (A1) in order to calculate the net scrap input to module A1.

Under a cradle-to-gate system boundary, scrap inputs to the system are not associated with any upstream burden, and scrap produced during manufacturing is assumed to be at least the same quality as scrap inputs into steelmaking. Remelting of scrap to produce structural steel and other raw materials is accounted for within module A1 using upstream datasets.

#### **Cut-off Rules**

In lieu of arbitrary cut-off criteria, all available energy and material flow data were included in the model for processes within the system boundary.

In cases where no matching life cycle inventories were available to represent a flow, proxy data were applied based on conservative assumptions regarding environmental impacts.

#### **Data Sources**

The LCA model was created using the GaBi 10 software system for life cycle engineering, developed by Sphera (Sphera, 2021). Background life cycle inventory data for raw materials and processes were obtained from the GaBi 2021 database (CUP 2021.1). Primary manufacturing data were provided by Vest Inc.

#### **Data Quality**

A variety of tests and checks were performed by the LCA practitioner throughout the project to ensure high quality of the completed LCA. Checks in cluded an extensive internal review of the project-specific LCA models developed as well as the background data used. A full data quality assessment is documented in the background report.

#### **Period Under Review**

Primary data were collected for HSS production during the year 2019 and 2020. Background data for steel coil production was taken from The American Iron and Steel Institute (AISI) and represents steel production during 2017. Fabrication data was taken from The American Institute of Steel Construction (AISC) and represents fabrication activity in 2019 and 2020 (AISI, 2021) (AISC, 2021). This analysis is intended to represent production in 2020.

## **Estimates and Assumptions**

The underlying study was conducted in accordance with the PCR. While this EPD has been developed by industry experts to best represent the product system, real life environmental impacts of HSS products may extend beyond those defined in this document.

All of the raw materials and energy inputs have been modeled using processes and flows that closely follow actual





According to ISO 14025 and ISO 21930:2017

production data on raw materials and processes. All of the reported material and energy flows have been accounted for. The HSS inventory data was collected as part of The Steel Tube Institute (STI) industry-average EPD (STI, 2021). Where inbound transportation data was incomplete, a distance of 500 miles by truck was used.

Proxy data were applied to some materials where no matching life cycle inventories were available, as documented in the background report.

## **Technical Information and Scenarios**

## Manufacturing

Hollow structural sections are manufactured by cold-forming steel coil into tubes. Hot-rolled coil is first slit into sections of appropriate width. The narrower coils are then uncoiled and passed through a series of rollers that form the continuous sheet into tubes. Tube cross-sections can be rectangular, round, or elliptical, depending upon the intended application. The two edges of the coil are welded together via an electric resistance welding process and the product is then cut to length. Once manufactured, HSS can be powder coated or primed or left uncoated. The tubes are subsequently packaged for shipment.

The primary input to HSS production is the steel itself, although small amounts of process and coating materials are needed. Electricity is used for manufacturing and to move the materials. Manufacturing produces some metal scrap. The scrap generated during manufacturing is assumed to be produced at the same quality as used by the upstream metal production processes. Therefore, the scrap from manufacturing is treated assuming open-loop recycling.

#### **Inbound Transportation**

Inbound transportation distances and modes for steel and process materials were collected from the site.

#### **Transportation**

Transportation to the customer or construction site is outside the scope of this EPD. Transportation (A2) from the HSS producers to the fabricator is included in the analysis and in this report.

#### **Product Installation**

This EPD includes fabrication impacts, however, installation (erection) is outside the scope of this EPD.

#### Use

Product use is outside the scope of this EPD.

## Reuse, Recycling, and Energy Recovery

Product reuse, recycling, and incineration for energy recovery is outside the scope of this EPD.

#### **Disposal**



## **ENVIRONMENTAL PRODUCT DECLARATION**



VEST, INC.
FABRICATED HOLLOW STRUCTURAL SECTIONS

According to ISO 14025 and ISO 21930:2017

Product disposal is outside the scope of this EPD.

#### **Environmental Indicators Derived from LCA**

North American life cycle impact assessment (LCIA) results are declared using TRACI 2.1 (Bare, 2012; EPA, 2012) methodology, with the exception of GWP which is reported using the IPCC AR5 (IPCC, 2013) methodology, excluding biogenic carbon. Primary energy use represents the lower heating value (LHV) a.k.a. net calorific value (NCV).

LCIA results are relative expressions and do not predict actual impacts, the exceeding of thresholds, safety margins or risks.

Fabrication requires 1.08 metric tons of HSS per 1 metric ton of fabricated product (AISC, 2021). A1 includes production of all 1.08 metric tons of HSS, A2 represent transportation to the fabrication facility and A3 represents the fabrication activities.

| PARAMETER             | Unit                   | TOTAL    | A1        | A2       | A3       |
|-----------------------|------------------------|----------|-----------|----------|----------|
| GWP 100               | kg CO <sub>2</sub> eq. | 1.90E+03 | 1.76E+03  | 4.46E+01 | 9.67E+01 |
| ODP*                  | kg CFC 11 eq.          | 1.62E-09 | -6.21E-13 | 8.67E-14 | 1.62E-09 |
| AP                    | kg SO <sub>2</sub> eq. | 4.16E+00 | 3.82E+00  | 1.83E-01 | 1.52E-01 |
| EP                    | kg N eq.               | 2.19E-01 | 1.90E-01  | 1.64E-02 | 1.23E-02 |
| SFP                   | kg O₃ eq.              | 7.08E+01 | 6.41E+01  | 4.44E+00 | 2.23E+00 |
| ADP <sub>fossil</sub> | MJ surplus             | 1.68E+03 | 1.51E+03  | 7.16E+01 | 1.04E+02 |

Table 1. LCIA results, per 1 metric ton of fabricated HSS

Comparability: Comparisons cannot be made between product-specific or industry average EPDs at the design stage of a project before a building has been specified. Comparisons may be made between product-specific or industry average EPDs at the time of product purchase when product performance and specifications have been established and serve as a functional unit for comparison. Environmental impact results shall be converted to a functional unit basis before any comparison is attempted.

Any comparison of EPDs shall be subject to the requirements of ISO 21930. EPDs are not comparative assertions and are either not comparable or have limited comparability when they have different system boundaries, are based on different product category rules or are missing relevant environmental impacts. Such comparison can be inaccurate, and could lead to erroneous selection of materials or products which are higher-impact, at least in some impact categories.

UNIT **P**ARAMETER **A2 A3 TOTAL A1 RPRE** MJ LHV 1.48E+03 1.20E+03 6.24E+01 2.16E+02 **RPR**<sub>M</sub> MJ LHV **NRPRE** MJ LHV 2.45E+04 2.23E+04 6.91E+02 1.47E+03  $NRPR_{M}$ MJ LHV 1.29E+01 2.83E-01 0.00E+00 1.26E+01 SM 4.96E+02 4.95E+02 0.00E+00 7.52E-01 kg **RSF** MJ LHV

Table 2. Resource use results, per 1 metric ton of fabricated HSS



<sup>\*</sup> ODP has limited relevance due to the absence of ozone-depleting emissions in the LCI, in both the background and foreground data.



According to ISO 14025 and ISO 21930:2017

| NRSF | MJ LHV | -        | -        | -        | -        |
|------|--------|----------|----------|----------|----------|
| RE   | MJ LHV | -        | -        | -        | -        |
| FW   | $m^3$  | 1.55E+01 | 1.46E+01 | 1.81E-01 | 6.82E-01 |

Table 3. Output flows and waste categories results, per 1 metric ton of fabricated HSS

| PARAMETER | Unit   | Total    | A1       | A2       | A3       |
|-----------|--------|----------|----------|----------|----------|
| HWD       | kg     | 3.32E-01 | 0.00E+00 | 0.00E+00 | 3.32E-01 |
| NHWD      | kg     | 9.66E+00 | 0.00E+00 | 0.00E+00 | 9.66E+00 |
| HLRW      | kg     | 9.49E-04 | 7.99E-04 | 3.16E-05 | 1.18E-04 |
| ILLRW     | kg     | 7.97E-01 | 6.72E-01 | 2.64E-02 | 9.85E-02 |
| CRU       | kg     | -        | -        | -        | -        |
| MR        | kg     | 7.71E+01 | 0.00E+00 | 0.00E+00 | 7.71E+01 |
| MER       | kg     | -        | -        | -        | -        |
| EE        | MJ LHV | -        | -        | -        | -        |

Vest manufacutres HSS in one location only. The GWP for the cradle-to-gate mill / unfabricated product is 1.63E+03 kg CO<sub>2</sub>.

## **Visualization of Life Cycle Impact Assessment**

The relative contribution of each life cycle stage to the overall cradle-to-gate impact are presented in Figure 1, while the contribution of manufacturing components are presented in Figure 2.

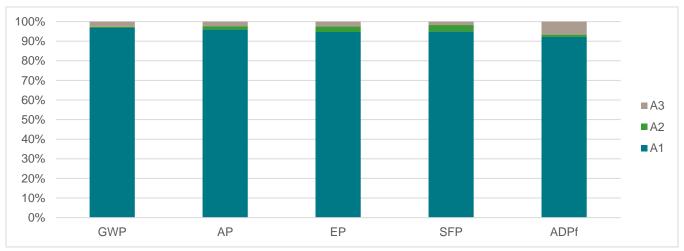



Figure 1: Relative contribution by life cycle stage for 1 metric ton of fabricated hollow structural sections





According to ISO 14025 and ISO 21930:2017

The vast majority of potential environmental impacts is driven by the upstream burdens of steelmaking, therefore A1 is the dominant contributor across LCIA indicators. To better understand sources of potential environmental impacts in Vest's manufacturing process, Figure 2 presents relative results for HSS manufacturing (A1 only). Potential environmental impacts for HSS manufacturing are dominated by upstream burdens of steelmaking.



Figure 2: Relative contribution by manufacturing component for 1 metric ton of un-fabricated hollow structural sections

## Interpretation

The cradle-to-gate potential environmental impacts of Vest's fabricated HSS products are driven by steel coil production and HSS manufacturing (A1).

## **Additional Environmental Information**

#### **Environment and Health During Manufacturing**

For additional information on safety and health guidelines, please visit https://www.vestinc.com

**Environmental Activities and Certifications** 

For additional information, please visit https://www.vestinc.com

**Further Information** 

For additional information, please visit https://www.vestinc.com





According to ISO 14025 and ISO 21930:2017

## References

Bare, J. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) - Software Name and Version Number: TRACI version 2.1 - User's Manual. Washington, D.C.: U.S. EPA.

EPA. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) - User's Manual. Washington, D.C.: US EPA.

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Genf, Schweiz: IPCC.

ISO. (2006). ISO 14040/Amd.1:2020: Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardization.

ISO. (2006). ISO 14044:2006/Amd.1:2017/Amd.2:2020 Environmental management – Life cycle assessment – Requirements and guidelines. Geneva: International Organization for Standardization.

ISO. (2017). ISO 21930: Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services. Geneva: International Organization for Standardization.

Sphera. (2021). GaBi LCA Database Documentation. Retrieved from Sphera Solutions, Inc.: http://www.gabi-software.com/america/support/gabi/

UL Environment. (2018). Part A: Life Cycle Assessment Calculation Rules and Report Requirements, Version 3.2.

UL Environment. (2020). Part B: Designated Steel Construction Product EPD Requirements.

UL Environment. (2020). Program Operator Rules v 2.5.

#### **Contact Information**

#### **Study Commissioner**



Vest, Inc. 6023 Alcoa Ave Vernon, CA 90058

Phone: (323)581-8823 Fax: (323)581-8677

**LCA Practitioner** 





According to ISO 14025 and ISO 21930:2017



Sphera Solutions, Inc. 130 E Randolph St, #2900 Chicago, IL 60601 https://sphera.com/contact-us/ www.sphera.com

